Alcaraz, M., Strickler, J.R., 1988. Locomotion in copepods: pattern of movements and energetics of Cyclops. Hydrobiologia 167/168, 409-414.

Arnott, S.A., Neil, D.M., Ansell, A.D., 1998. Tail-flip mechanism and size-dependent kinematics of escape swimming in the brown shrimp Crangon crangon. J. exp. Biol. 201, 1771-1784.

Askew, G.N., Marsh, R.L., 1998. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation. J. exp. Biol. 201, 1527-1540.

Bennet-Clark, H.C., 1975. The energetics ofthe jump of the locust Schistocerca gregaria. J. exp. Biol. 63: 53-83.

Bennet-Clark, H.C., Lucey, E.C.A., 1967. The jump of the flea: a study of the energetics and a model of the mechanism. J. exp. Biol. 47, 59-76.

Brackenbury, J., 1999. Regulation of swimming in the Culex pipiens (Diptera, Culicidae) pupa: kinematics and locomotory trajectories. J. exp. Biol. 202, 2521-2529.

Brewer, M.C., Dawidowicz, P., Dodson, S.I., 1999. Interactive effects of fish kairomone and light on Daphnia escape behavior. J. Plankton Res. 21, 1317-1335.

Burrows, M. and Morris, O., 2003. Jumping and kicking in bush crickets. J. exp. Biol. 206:1035-1049

Buskey, E.J., Hartline, D.K., 2003. High-speed video analysis of the escape responses of the copepod Acartia tonsa to shadows. Biol. Bull. 204, 28-37.

Buskey, E.J., Lenz, P.H., Hartline, D.K., 2002. Escape behavior of planktonic copepods in reponse to hydrodynamic disturbances: high speed video analysis. Mar. Ecol. Progr. Ser. 235, 135-146.

Daniel, T.L., Meyhofer, E., 1989. Size limits in escape locomotion of carridean shrimp. J. exp. Biol. 143, 245-265.

Domenici, P., Blake, R.W., 1997. The kinematics and performance of fish fast-start swimming. J. exp. Biol. 200, 1165-1178.

Evans, M.E.G., 1973. The jump of the click beetle (Coleoptera: Elateridae): energetics and mechanics. J. Zool. London 169, 181-194.

Fields, D.M., Yen, J., 1997. The escape behaviour of marine copepods in response to a quantifiable fluid mechanical disturbance. J. Plankton Res. 19, 1289-1304.

Hays G.C., Warner A.J., Tranter P., 1997. Why do the two most abundant copepods in the North Atlantic differ so markedly in their diel vertical migration behaviour? J. Sea Res 38, 85-92.

James, R.S., Altringham, J.D., Goldspink, D.F., 1995. The mechanical properties of fast and slow skeletal muscles of the mouse in relation to their locomotory function. J. exp. Biol. 198, 491-502.

Josephson, R.K., 1984. Contraction dynamics of flight and stridulatory muscles of tettigoniid insects. J. exp. Biol. 108, 77-96.

Josephson, R.K., 1997. Power output from a flight muscle of the bumblebee Bombus terrestris. III. Power during simulated flight. J. exp. Biol. 200, 1241-1246.

Koehl, M.A.R., Strickler, J.R., 1981. Copepod feeding currents: food capture at low Reynolds number. Limnol. Oceanogr. 26, 1062-1073.

Lehmann, F.-O., Dickinson, M.H., 1997. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J. exp. Biol. 200, 1133-1143.

Lenz, P.H., Hartline, D.K., 1999. Reaction times and force production during escape behavior of a calanoid copepod, Undinula vulgaris. Marine Biol. 133, 249-258.

Lenz, P.H., Hartline, D.K., Davis, A.D., 2000. The need for speed. I. Fast reactions and myelinated axons in copepods. J. comp. Physiol. A 186, 337-345.

Lenz, P.H., Hower, A.E., Hartline, D.K., 2004. Force production during pereiopod power strokes in Calanus finmarchicus J. mar. Systems (in press)

Marden, J.H., 1987. Maximum lift production during takeoff in flying animals. J. exp. Biol. 130, 235-258

McPeek, M.A., Schrot, A.K., Brown, J.M., 1996. Adaptation to predators in a new community: swimming performance and predator avoidance in damselflies. Ecology 77, 617-629.

Morris, M.J., Gust, G., Torres, J.J., 1985. Propulsion efficiency and cost of transport for copepods: a hydromechanical model of crustacean swimming. Marine Biol. 86, 283-295.

Nachtigall, W., 1977. Swimming mechanics and energetics of locomotion in variously sized water beetles - Dytiscidae, body lengths 2 to 35 mm. In: T.J. Pedley (editor), Scale effects in animal locomotion. Academic Press, London, pp. 269-283.

Nauen, J.C., Shadwick, R.E., 1999. The scaling of acceleratory aquatic locomotion: body size and tail-flip performance of the California spiny lobster Panulirus interruptus. J. exp. Biol. 202, 3181-3193.

Packard, A.. 1969. Jet propulsion and the giant fibre response of Loligo. Nature 221, 875-877.

Satterlie, R.A., Norekian, T.P., Robertson, K.J., 1977. Startle phase of escape swimming is controlled by pedal motoneurons in the pteropod mollusk Clione limacina. J. Neurophysiol. 77, 272-280.

Shepherd, T.D., Costain, K.E., Litvak, M.K., 2000. Effect of development rate on the swimming, escape responses and morphology of yolk-sac stage larval Americal plaice, Hippoglossoides platessoides. Marine Biol. 137, 737-745.

Stentiford, G.D., Neil, D.M., Atkinson, R.J.A., Bailey, N., 2000. An analysis of swimming performance in the Norway lobster, Nephrops norvegicus L. infected by a parasitic dinoflagellate of the genus Hematodinium. J. Exp. Mar. Biol. Ecol. 247, 169-181.

Stevenson, R.D., Josephson, R.K., 1990. Effects of operating frequency and temperature on mechanical power output from moth flight muscle. J. exp. Biol. 149, 61-78.

Storch, O., 1929. Die Schwimmbewegung der Copepoden, auf Grund von Mikro-Zeitlupenaufnahmen analysiert. Verhaltungen der Deutschen Zoologischen Gesellschaft, Zoologischer Anzeiger Supplement 4, 118-129.

Strickler, J.R., 1975. Swimming of planktonic Cyclops species (Copepoda, Crustacea): pattern, movements and their control. In: T.Y.-T. Wu, C.J. Brokaw, C. Brennan (Editors), Swimming and flying in nature. Vol. 2. Plenum Press, New York, NY, pp. 599-613.

Svetlichnyy, L.S., 1987. Speed, force and energy expenditure in the movement of copepods. Oceanology 27, 497-502.

Svetlichnyy, L.S., Svetlichnyy A.S., 1986. Measurement of the locomotion characteristics of copepods attached to a dynamometer sensor. Oceanology 26, 646-647.

Swoap, S.J., Johnson, T.P., Josephson, R.K., Bennett, A.F., 1993. Temperature, muscle power output and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J. exp. Biol. 174, 185-197.

Tiselius, P., Jonsson, P.R., 1990. Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar. Ecol. Progr. Ser. 66, 23-33.

Van Duren, L.A., Videler, J.J., 2003. Escape from viscosity: the kinematics and hydrodynamics of copepods foraging and escape swimming. J. exp. Biol. 206, 269-279

Webb, P.W., 1979. Mechanics of escape responses in crayfish (Orconectes virilis). J. Exp. Biol. 79, 245-263

Williams P.J., Brown, J.A., Gotceitas, V., Pepin, P., 1996. Developmental changes in escape performance of five species of marine larval fish. Can. J. Fish. Aquatic Sci. 53, 1246-1253.

Wilson, R.S., Franklin, C.E., 2000. Effect of ontogenetic increases in body size on burst swimming performance in tadpoles of the striped marsh frog, Limnodynastes peronii. Physiol. biochem. Zool 73, 142-152


Data sources for figure (keyed to reference list above):

Calanoid copepods: Lenz et al 2004; Yen and Strickler 1996; Buskey et al. 2002);

Cladocerans: Brewer et al. 1999

Malacostracans (crayfish and lobsters) Webb 1979; Nauen and Shadwick 1999; Stentiford et al. 2000

Shrimp: Daniel and Meyhofer 1989; Arnott et al. 1998

Aquatic insect larvae: McPeek et al. 1996; Brackenbury 1999

Mollusks:Packard 1969; Satterlie et al., 1977

Tadpole: Wilson and Franklin 2000

Fishes: Williams et al. 1996; Domenici and Blake 1997; Shepherd et al. 2000

Lower regression line (y = 45.3 l^0.68, r^2=0.830) computed for fish data only.

Return to Animal Olympians page